Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
نویسندگان
چکیده
Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.
منابع مشابه
Thermal Conductivity Measurements on Polycrystalline Silicon Microbridges Using the 3 Technique
The thermal performance of microelectromechanical systems devices is governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction in the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (po...
متن کاملTemperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
Polycrystalline silicon is used in microelectronic and microelectromechanical devices for which thermal design is important. This work measures the in-plane thermal conductivities of free-standing undoped polycrystalline layers between 20 and 300 K. The layers have a thickness of 1 +m, and the measurements are performed using steady-state Joule heating and electrical-resistance thermometry in p...
متن کاملCharacterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
In this work, a novel steady-state electro-Ramanthermal (SERT) technique is developed to characterize the thermal transport in one-dimensional micro/nanoscale materials. The SERT technique involves steady-state joule heating of a suspended sample and measuring its middle point temperature based on the temperature dependence of the Raman shift peak intensity. The thermal conductivity is determin...
متن کاملCharacterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique
This work reports on the development of a Johnson noise electro-thermal (JET) technique to directly characterize the thermal conductivity of one-dimensional micro-/nanoscale materials. In this technique, the to-bemeasured micro-/nanoscale sample is connected between two electrodes and is subjected to steady-state Joule heating. The average temperature rise of the sample is evaluated by simultan...
متن کاملThermal characterization of carbon nanotube fiber by time-domain differential Raman
Most conventional Raman thermometry for thermal properties measurement is on steady-state basis, which utilizes either Joule heating effect or two lasers configurations coupled with increased complexity of system or measurement uncertainty. In this work, a new comprehensive approach including both transient and steady-state Raman method is proposed for thermal properties measurement of micro/ n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 83 12 شماره
صفحات -
تاریخ انتشار 2012